Tuesday, October 18, 2016

Fracking Wastewater is Mostly Brines, Not Human-Made Fracking Fluids

Date: October 17, 2016
Source: Duke University
Summary: Human-made chemical-laden fracking fluids make up less than 8 percent of wastewater being produced by fracked wells; more than 92% of it is naturally occurring brines, which carry their own risks but may have beneficial re-uses, say investigators.

Naturally occurring brines, not human-made fracking fluids, account for most of the wastewater coming from hydraulically fractured unconventional oil and gas wells, a new Duke University study finds.

"Much of the public fear about fracking has centered on the chemical-laden fracking fluids -- which are injected into wells at the start of production -- and the potential harm they could cause if they spill or are disposed of improperly into the environment," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

"Our new analysis, however, shows that these fluids only account for between 4 and 8 percent of wastewater being generated over the productive lifetime of fracked wells in the major U.S. unconventional oil and gas basins," Vengosh said. "Most of the fracking fluids injected into these wells do not return to the surface; they are retained in the shale deep underground.

"This means that the probability of having environmental impacts from the human-made chemicals in fracking fluids is low, unless a direct spill of the chemicals occurs before the actual fracking," he said.

More than 92 percent of the flowback and produced water -- or wastewater -- coming from the wells is derived from naturally occurring brines that are extracted along with the gas and oil.

These brines carry their own risks, Vengosh stressed. They contain varying levels of salts, heavy metals and naturally occurring radioactive elements, and their sheer volume makes disposing of them a challenge.

"But with proper treatment, they potentially could have beneficial reuses," he said, "especially out West, where our study shows most brines being produced by fracked wells are much less saline than those in the East. These Western brines, which are similar in salinity to sea water, could possibly be treated and re-used for agricultural irrigation or other useful purposes, especially in areas where freshwater is scarce and drought is persistent."

The Duke team published its findings Oct. 14 in the peer-reviewed journal Science of the Total Environment.

The researchers used three statistical techniques to quantify the volume of wastewater generated from unconventional oil and gas wells in six basins nationwide: the Bakken formation in North Dakota; the Marcellus formation in Pennsylvania; the Barnett and Eagle Ford formations in Texas; the Haynesville formation in Arkansas, Louisiana and East Texas; and the Niobrara field in Colorado and Wyoming.

Using multiple statistical techniques "helped us more accurately account for changes in each well's wastewater volume and salinity over time, and provide a more complete overview of the differences from region to region," said Andrew J. Kondash, a doctoral student in Vengosh's lab at Duke's Nicholas School, who led the study.

"This makes our findings much more useful, not just for scientists but for industry and regulatory agencies as well," he said.

Among other findings, the new study shows that the median volume of wastewater produced by an unconventional oil or gas well ranges from 1.7 to 14.3 million liters per year over the first five to 10 years of production. The volume of produced water coming from these wells declines over time, while its salinity increases.

"The salt levels rise much faster than the volume declines, resulting in a high volume of saline wastewater during the first six months of production," Vengosh said. After that, the volume of wastewater produced by a well typically drops, along with its hydrocarbon output.

Elizabeth Albright, assistant professor of the practice of environmental science and policy methods at the Nicholas School, co-authored the study with Kondash and Vengosh.

Story Source:

Materials provided by Duke University. Note: Content may be edited for style and length.

Duke University. "Fracking wastewater is mostly brines, not human-made fracking fluids." ScienceDaily. ScienceDaily, 17 October 2016. www.sciencedaily.com/releases/2016/10/161017150835.htm

Friday, October 14, 2016

Brewery Wastewater Transformed into Energy Storage

Date: October 7, 2016
Source: University of Colorado at Boulder
Summary: Engineers have developed an innovative bio-manufacturing process that uses a biological organism cultivated in brewery wastewater to create the carbon-based materials needed to make energy storage cells. This unique pairing of breweries and batteries could set up a win-win opportunity by reducing expensive wastewater treatment costs for beer makers while providing manufacturers with a more cost-effective means of creating renewable, naturally-derived fuel cell technologies.

CU Boulder engineers have developed an innovative bio-manufacturing process that uses a biological organism cultivated in brewery wastewater to create the carbon-based materials needed to make energy storage cells.

This unique pairing of breweries and batteries could set up a win-win opportunity by reducing expensive wastewater treatment costs for beer makers while providing manufacturers with a more cost-effective means of creating renewable, naturally-derived fuel cell technologies.

"Breweries use about seven barrels of water for every barrel of beer produced," said Tyler Huggins, a graduate student in CU Boulder's Department of Civil, Environmental and Architectural Engineering and lead author of the new study. "And they can't just dump it into the sewer because it requires extra filtration."

The process of converting biological materials, or biomass, such as timber into carbon-based battery electrodes is currently used in some energy industry sectors. But, naturally-occurring biomass is inherently limited by its short supply, impact during extraction and intrinsic chemical makeup, rendering it expensive and difficult to optimize.

However, the CU Boulder researchers utilize the unsurpassed efficiency of biological systems to produce sophisticated structures and unique chemistries by cultivating a fast-growing fungus, Neurospora crassa, in the sugar-rich wastewater produced by a similarly fast-growing Colorado industry: breweries.

"The wastewater is ideal for our fungus to flourish in, so we are happy to take it," said Huggins.

By cultivating their feedstock in wastewater, the researchers were able to better dictate the fungus's chemical and physical processes from the start. They thereby created one of the most efficient naturally-derived lithium-ion battery electrodes known to date while cleaning the wastewater in the process.

The findings were published recently in the American Chemical Society journal Applied Materials & Interfaces.

If the process were applied on a large scale, breweries could potentially reduce their municipal wastewater costs significantly while manufacturers would gain access to a cost-effective incubating medium for advanced battery technology components.

"The novelty of our process is changing the manufacturing process from top-down to bottom-up," said Zhiyong Jason Ren, an associate professor in CU Boulder's Department of Civil, Environmental and Architectural Engineering and a co-author of the new study. "We're biodesigning the materials right from the start."

Huggins and study co-author Justin Whiteley, also of CU Boulder, have filed a patent on the process and created Emergy, a Boulder-based company aimed at commercializing the technology.

"We see large potential for scaling because there's nothing required in this process that isn't already available," said Huggins.

The researchers have partnered with Avery Brewing in Boulder in order to explore a larger pilot program for the technology. Huggins and Whiteley recently competed in the finals of a U.S. Department of Energy-sponsored startup incubator competition at the Argonne National Laboratory in Chicago, Illinois.

The research was funded by the Office of Naval Research and came as a result of a unique cross-disciplinary collaboration between Ren's lab in CU Boulder's Department of Civil, Environmental and Architectural Engineering; Professor Se-Hee Lee's lab in CU Boulder's Department of Mechanical Engineering; and Justin Biffinger's lab at the Naval Research Laboratory in Washington, D.C.

"This research speaks to the spirit of entrepreneurship at CU Boulder," said Ren, who plans to continue experimenting with the mechanisms and properties of the fungus growth within the wastewater. "It's great to see students succeeding and creating what has the potential to be a transformative technology. Energy storage represents a big opportunity for the state of Colorado and beyond."

Story Source:
Materials provided by University of Colorado at Boulder. Note: Content may be edited for style and length.

University of Colorado at Boulder. "Brewery wastewater transformed into energy storage." ScienceDaily. ScienceDaily, 7 October 2016. www.sciencedaily.com/releases/2016/10/161007120518.htm.

Thursday, October 6, 2016

China's Forest Recovery Shows Hope for Mitigating Global Climate Change

Date: March 18, 2016
Source: Michigan State University
Summary: China's sweeping program to restore forests across the country is working. The vast destruction of China's forests, leveled after decades of logging, floods and conversion to farmland, has become a story of recovery, according to the first independent verification.


Much of the land in this Chinese community has been converted to forest from cropland through the government's Grain to Green program.
Credit: Michigan State University Center for Systems Integration and Sustainability

China's sweeping program to restore forests across the country is working.

The vast destruction of China's forests, leveled after decades of logging, floods and conversion to farmland, has become a story of recovery, according to the first independent verification published in today's Science Advances by Michigan State University (MSU) researchers.

"It is encouraging that China's forest has been recovering in the midst of its daunting environmental challenges such as severe air pollution and water shortages," said co-author Jianguo "Jack" Liu, Rachel Carson Chair in Sustainability and director of MSU's Center for Systems Integration and Sustainability (CSIS). "In today's telecoupled world, China is increasingly connected with other countries both socioeconomically and environmentally. Every victory must be measured holistically, or we aren't getting a true picture."

Forests are crucial to ensuring soil and water conservation and climate regulation. The fate of forests in the world's most populous nation has global consequences by virtue of the country's sheer magnitude and its rapid development.

Since the beginning of the 21st Century, China has implemented the largest forest conservation andRecovering forests, with deforested areas in the background in Wolong China restoration programs in the world, the Natural Forest Conservation Program (NFCP), which bans logging, and in some forested areas compensates residents for monitoring activities preventing illegal timber harvesting.

The MSU scientists used a unique combination of data, including the big-picture view of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) annual Vegetation Continuous Fields tree cover product, along with high spatial resolution imagery available in Google Earth. Then they combined data at different scales to correlate the status of the forests with the implementation of the NFCP.

And, as the Chinese government has contended, the program is working and forests are recovering, with about 1.6 percent, or nearly 61,000 square miles, of China's territory seeing a significant gain in tree cover, while 0.38 percent, or 14,400 square miles, experienced significant loss.

"Our results are very positive for China," said author Andrés Viña of MSU-CSIS. "If you look at China in isolation, its program is working effectively and contributing to carbon sequestration in accordance to its agenda for climate change mitigation. But on the other hand, China is not in a vacuum."

In the future, it is important to quantify how much China's forest gain and improved carbon sequestration may be a loss for places like Madagascar, Vietnam and Indonesia. Those are among the countries that are chopping down their forests to sell products to China. And the global increase in greenhouse gases and loss of biodiversity may have just changed addresses.

Viña noted more research is needed to document the broader impacts of forest degradation and recovery around the world. He also noted that the voracious appetite for natural resources -- both timber and the agricultural products grown on converted forestland -- is not just China's issue.

"We are all part of the problem one way or another," he said. "We all buy products from China, and China has not changed their imports and exports of wood at all. What has changed is where timber is coming from."

Besides Viña and Liu, "Effects of conservation policy on China's forest recovery" was written by MSU associate professor William McConnell, and CSIS PhD students Hongbo Yang and Zhenci Xu.

The work was supported by the National Science Foundation and MSU AgBioResearch.

Story Source:
Materials provided by Michigan State University. Note: Content may be edited for style and length.

Journal Reference:
A. Vina, W. J. McConnell, H. Yang, Z. Xu, J. Liu. Effects of conservation policy on Chinas forest recovery. Science Advances, 2016; 2 (3): e1500965 DOI: 10.1126/sciadv.1500965

Michigan State University. "China's forest recovery shows hope for mitigating global climate change." ScienceDaily. ScienceDaily, 18 March 2016. www.sciencedaily.com/releases/2016/03/160318181617.htm.