Wednesday, August 9, 2017

Antibiotics Come With 'Environmental Side Effects'

Report published in Microchemical Journal wins Elsevier's Atlas award

Date: July 25, 2017
Source: Elsevier
Summary: Researchers are bringing attention to the fact that commonly used antibiotic drugs are making their way out into the environment, where they can harm microbes that are essential to a healthy environment.

Researchers writing in Microchemical Journal are bringing attention to the fact that commonly used antibiotic drugs are making their way out into the environment, where they can harm microbes that are essential to a healthy environment. Their review article has been selected for the Elsevier Atlas Award, which recognizes research that could significantly impact people's lives around the world or has already done so.

"The amount of antibiotics is very, very low -- there are normally nanograms per liter of these molecules found in natural environments," said Dr. Paola Grenni, a microbial ecologist at the National Research Council's Water Research Institute in Italy. "But the antibiotics and also other pharmaceuticals can have an effect even in low concentrations, the so-called environmental side-effects."

When people take antibiotics, their bodies break down and metabolize only a portion of the drugs. The rest is excreted and enters wastewater. Because wastewater treatment plants aren't designed to fully remove antibiotic or other pharmaceutical compounds, many of those compounds reach natural systems where they can accumulate and harm microbes in nature.

That's a big concern, Dr. Grenni said, because many microbial species found in the environment are beneficial, playing important roles in natural cycles of nutrients, primary production and climate regulation. Some microbes also degrade organic contaminants, such as pesticides.

The review paper published by Dr. Grenni along with colleagues Drs. Valeria Ancona and Anna Barra Caracciolo highlights commonly used antibiotic compounds and their active ingredients. Some of those medications are used to treat people. Many others are used in veterinary medicine, especially to treat farm animals including cattle, pigs and poultry.

The release of antibiotics into natural systems is a "real-life experiment" with consequences that aren't yet fully known. Dr. Grenni and her colleagues say there's a need for more specific protections of environmental microbes given their importance to functioning ecosystems.

It's important for nations to work to reduce unnecessary antibiotic use and the release of those antibiotics that are needed into the environment. To that end, efforts should be made to equip wastewater treatment plants for removal of those compounds and to devise methods to improve the degradation of antibiotics once they reach natural environments. Members of the public can help by taking care to use antibiotics only when they are truly needed, and by disposing of expired medications properly.

"There are only a few researchers working in this field, but it's very important," Dr. Grenni said. "We need to know the different molecules we normally use that are in the environment and the effect they have. We need more research in this field."

Story Source: Elsevier. "Antibiotics come with 'environmental side effects': Report published in Microchemical Journal wins Elsevier's Atlas award." ScienceDaily. ScienceDaily, 25 July 2017. https://www.sciencedaily.com/releases/2017/07/170725122046.htm.

Friday, July 28, 2017

Heavy Metals in Water Meet Their Match

Reusable, Carbon Nanotube-Reinforced Filters Clean Toxins from Water, study shows

Date: July 27, 2017
Source: Rice University
Summary: A high school student's project removes more than 99 percent of heavy metal toxins from water. A new article demonstrates its potential for water remediation in developing nations around the world.



Plain quartz fiber, top, gains the ability to remove toxic metals from water when carbon nanotubes are added, bottom. The filters absorbed more than 99 percent of metals from test samples laden with cadmium, cobalt, copper, mercury, nickel and lead. Once saturated, the filters can be washed and reused.
Credit: Barron Research Group/Rice University


Carbon nanotubes immobilized in a tuft of quartz fiber have the power to remove toxic heavy metals from water, according to researchers at Rice University.

Prize-winning filters produced in the lab of Rice chemist Andrew Barron by then-high school student and lead author Perry Alagappan absorb more than 99 percent of metals from samples laden with cadmium, cobalt, copper, mercury, nickel and lead. Once saturated, the filters can be washed with a mild household chemical like vinegar and reused.

The researchers calculated one gram of the material could treat 83,000 liters of contaminated water to meet World Health Organization standards -- enough to supply the daily needs of 11,000 people.

The lab's analysis of the new filters appears this month in Nature's open-access Scientific Reports.

The robust filters consist of carbon nanotubes grown in place on quartz fibers that are then chemically epoxidized. Lab tests showed that scaled-up versions of the "supported-epoxidized carbon nanotube" (SENT) filters proved able to treat 5 liters of water in less than one minute and be renewed in 90 seconds. The material retained nearly 100 percent of its capacity to filter water for up to 70 liters per 100 grams of SENT, after which the metals contained could be extracted for reuse or turned into a solid for safe disposal.

While the quartz substrate gives the filter form and the carbon nanotube sheath makes it tough, the epoxidation via an oxidizing acid appears to be most responsible for adsorbing the metal, they determined.

Alagappan, now an undergraduate student at Stanford University, was inspired to start the project during a trip to India, where he learned about contamination of groundwater from the tons of electronic waste -- phones, computers and the like -- that improperly end up in landfills.

"Perry contacted me wanting to gain experience in laboratory research," Barron said. "Since we had an ongoing project started by Jessica Heimann, an undergraduate who was taking a semester at Jacobs University Bremen, this was a perfect match."

Barron said the raw materials for the filter are inexpensive and pointed out the conversion of acetic acid to vinegar is ubiquitous around the globe, which should simplify the process of recycling the filters for reuse even in remote locations. "Every culture on the planet knows how to make vinegar," he said.

"This would make the biggest social impact on village-scale units that could treat water in remote, developing regions," Barron said. "However, there is also the potential to scale up metal extraction, in particular from mine wastewater."

Alagappan's research won a series of awards while he was still a high school student in Clear Lake, a Houston suburb, as well as a visiting student in Barron's Rice lab. First was the top prize for environmental sciences at the Science and Engineering Fair of Houston in 2014. That qualified him to enter the Intel International Science and Engineering Fair in Los Angeles the next year, where he also took the top environmental award.

He booted that into the top prize at the 2015 Stockholm Junior Water Prize, where the crown princess of Sweden presented him with the honor.

"It's been a tremendous honor to be recognized on an international level for this research, and I am grateful for the opportunity to work on this project alongside such a talented group of individuals," Alagappan said. "I also especially appreciated being able to meet with other young researchers at the Intel International Science Fair and the Stockholm Junior Water Prize, who inspired me with their firm commitment to elevate society through science and technology."

Story Source: Rice University. "Heavy metals in water meet their match: Reusable, carbon nanotube-reinforced filters clean toxins from water, study shows." ScienceDaily. ScienceDaily, 27 July 2017. www.sciencedaily.com/releases/2017/07/170727083159.htm

Thursday, July 13, 2017

Release of Treated Wastewater From Hydraulic Fracturing Contaminates Lake

Date: July 12, 2017
Source: American Chemical Society
Summary: Hydraulic fracturing has enabled a domestic oil and gas boom in the US, but its rapid growth has raised questions about what to do with the billions of gallons of wastewater that result. Researchers now report that treating the wastewater and releasing it into surface waters has led to the contamination of a Pennsylvania watershed with radioactive material and endocrine-disrupting chemicals.


Treating fracking wastewater and releasing it into surface waters has led to the contamination of a Pennsylvania watershed with radioactive material and endocrine-disrupting chemicals, report investigators. (Stock image)
Credit: © John / Fotolia


Hydraulic fracturing has enabled a domestic oil and gas boom in the U.S., but its rapid growth has raised questions about what to do with the billions of gallons of wastewater that result. Researchers now report that treating the wastewater and releasing it into surface waters has led to the contamination of a Pennsylvania watershed with radioactive material and endocrine-disrupting chemicals. The study appears in ACS' journal Environmental Science & Technology.

In 2015, the unconventional oil and gas extraction method known as hydraulic fracturing, or "fracking," accounted for more than one-half of oil production and two-thirds of gas production in America, according to the U.S. Energy Information Administration. The method's market share is likely to increase even further. Although the technique has resulted in a shift away from coal, which could reduce greenhouse gas emissions, it produces large amounts of wastewater containing radioactive material, salts, metals, endocrine-disrupting chemicals and polycyclic aromatic hydrocarbons that could pose risks to the environment and human health. A Pennsylvania report estimates that in 2015, 10,000 unconventional oil and gas wells in the Marcellus Shale produced 1.7 billion gallons of wastewater. The facilities that collect the water provide only limited treatment before releasing it into surface waters. Bill Burgos and colleagues at Penn State, Colorado State and Dartmouth wanted to see what impact this strategy of treating and releasing fracking wastewater might be having.

The researchers sampled sediments and porewaters from a lake downstream from two facilities that treat fracking wastewater in Pennsylvania. Their analysis detected that peak concentrations of radium, alkaline earth metals, salts and organic chemicals all occurred in the same sediment layer. The two major classes of organic contaminants included nonylphenol ethoxylates, which are endocrine-disrupting chemicals, and polycyclic aromatic hydrocarbons, which are carcinogens. The highest concentrations coincided with sediment layers deposited five to 10 years ago during a peak period of fracking wastewater disposal. Elevated levels of radium were also found as far as 12 miles downstream of the treatment plants. The researchers say that the potential risks associated with this contamination are unknown, but they suggest tighter regulations of wastewater disposal could help protect the environment and human health.

Story Source:
American Chemical Society. "Release of treated wastewater from hydraulic fracturing contaminates lake." ScienceDaily. ScienceDaily, 12 July 2017. https://www.sciencedaily.com/releases/2017/07/170712110605.htm

Thursday, June 29, 2017

Bacteria-Coated Nanofiber Electrodes Clean Pollutants in Wastewater

Date: June 28, 2017
Source: Cornell University
Summary: Researchers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.

Cornell University materials scientists and bioelectrochemical engineers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.

The researchers created electro-spun carbon nanofiber electrodes and coated them with a conductive polymer, called PEDOT, to compete with carbon cloth electrodes available on the market. When the PEDOT coating is applied, an electrically active layer of bacteria -- Geobacter sulfurreducens -- naturally grows to create electricity and transfer electrons to the novel electrode.

The conducting nanofibers create a favorable surface for this bacteria, which digests pollutants from the wastewater and produces electricity, according to the research.

"Electrodes are expensive to make now, and this material could bring the price of electrodes way down, making it easier to clean up polluted water," said co-lead author Juan Guzman, a doctoral candidate in the field of biological and environmental engineering. Under a microscope, the carbon nanofiber electrode resembles a kitchen scrubber.

The electrode was made by co-lead author Meryem Pehlivaner, currently a doctoral student at Northeastern University, with senior author Margaret Frey, professor of fiber science and an associate dean of the College of Human Ecology. Pehlivaner fabricated the carbon nanofibers via electrospinning and carbonization processes. After a few hours electrospinning, a thick nanofiber sheet -- visible to the naked eye -- emerges.

Pehlivaner reached out to Guzman and senior author Lars Angenent, professor of biological and environmental engineering, for collaboration in applying the carbon nanofiber electrodes to simultaneous wastewater treatment and production of electrical energy.

The customizable carbon nanofiber electrode was used for its high porosity, surface area and biocompatibility with the bacteria. By adhering PEDOT, the material gets an improved function, according to the researchers.

Guzman said wastewater treatment plants do not employ this method -- yet. On a large scale, the bacteria at the electrode could capture and degrade pollutants from the wastewater that flows by it. Such a technology can improve wastewater treatment by allowing systems to take up less land and increase throughput.

Concepts like this happen on campuses where faculty and students want to communicate and collaborate, Angenent said. "This defines radical collaboration," he said. "We have fiber scientists talking to environmental engineers, from two very different Cornell colleges, to create reality from an idea -- that was more or less a hunch -- that will make cleaning wastewater better and a little more inexpensive."

Story Source: Cornell University. "Bacteria-coated nanofiber electrodes clean pollutants in wastewater." ScienceDaily. ScienceDaily, 28 June 2017. www.sciencedaily.com/releases/2017/06/170628144829.htm

Tuesday, June 27, 2017

Algae: The Final Frontier

Date: June 21, 2017
Source: Carnegie Institution for Science
Summary: Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe. And yet fewer than 10 percent of the algae have been formally described in the scientific literature, as noted in a new review.

Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe. And yet fewer than 10 percent of the algae have been formally described in the scientific literature, as noted in a new review co-authored by Carnegie's Arthur Grossman in Trends in Plant Science.

Algae are everywhere. They are part of crusts on desert surfaces and form massive blooms in lakes and oceans. They range in size from tiny single-celled organisms to giant kelp.

Algae also play crucial roles in human life. People have eaten "seaweed" (large macroalgae) for millennia. But algae can also represent a health hazard when toxic blooms suffocate lakes and coastlines.

Despite the pervasiveness of algae and their importance in our planet's ecology and in human health and nutrition, there is so much that scientists don't know about them. This lack of knowledge is mostly due to limited support and the need to develop methodologies for probing the various algal groups at the molecular level.

The term 'algae' is used informally to embrace a large variety of photosynthetic organisms that belong to a number of different taxa. To effectively reveal the mysteries of each of these organisms would require creating research processes that are effective for each of them (what works with one often doesn't work with another).

However, some of the latest molecular techniques have allowed scientists to elucidate major genetic processes that have shaped algal evolution. And this improved knowledge has implications beyond basic scientific discovery.

For example, in the future, algae may be used to produce biofuels or to synthesize high-value therapeutic compounds or plastics. Furthermore, with an improved understanding of metabolism in the various algal groups, scientists can better develop strategies to exploit algae for the production of materials -- using them as "cellular factories," in a sense.

Many studies have shown that algae can also adapt to changing environmental conditions. But what are the limits of this ability? And how will the effect of climate change on the world's oceans impact algae and the oxygen that we derive from them?

"In the process of reviewing the state of algal research, we feel that we are on the cusp of a revolution in understanding this group of organisms, their importance in shaping ecosystems worldwide, and the ways in which they can be used to enrich humankind," said Grossman.

Story Source: Carnegie Institution for Science. "Algae: The final frontier." ScienceDaily. ScienceDaily, 21 June 2017. www.sciencedaily.com/releases/2017/06/170621165931.htm

Tuesday, May 30, 2017

Water Efficiency in Rural Areas is Getting Worse, Even as it Improves in Urban Centers

Date: May 18, 2017
Source: North Carolina State University
Summary: A nationwide analysis of water use over the past 30 years finds that there is a disconnect between rural and urban areas, with most urban areas becoming more water efficient and most rural areas becoming less and less efficient over time.



This map shows spatio-temporal patterns of water-use efficiency (per-capita consumption) across the continental United States. Colors indicate the change in per-capita consumption, in gallons per day per person, computed as the difference between 2010 and 1985 estimates. The numbers shown in each state indicate the number of 5-year periods each state reduced its per-capita withdrawals from 1985 to 2010.
Credit: Sankar Arumugam


A nationwide analysis of water use over the past 30 years finds that there is a disconnect between rural and urban areas, with most urban areas becoming more water efficient and most rural areas becoming less and less efficient over time.

"Understanding water use is becoming increasingly important, given that climate change is likely to have a profound impact on the availability of water supplies," says Sankar Arumugam, lead author of a paper on the work. "This research helps us identify those areas that need the most help, and highlights the types of action that may be best suited to helping those areas." Arumugam is a University Faculty Scholar and professor of civil, construction and environmental engineering at North Carolina State University.

The new paper stems from a National Science Foundation-funded, interuniversity research project which focuses on understanding how water sustainability in the United States has changed over the past 30 years as a result of climate change and population growth.

For this paper, researchers evaluated water use data at the state and county level for the 48 contiguous states. Specifically, the researchers looked at water-use efficiency, measured as per capita consumption, in 5-year increments, from 1985 to 2010.

"This is the first systematic evaluation of water use across the continental U.S.," Arumugam says. "And we found that some states -- including Washington, Pennsylvania and Wyoming -- were becoming more efficient every five years. Meanwhile, other states -- such as South Carolina, Oklahoma and Mississippi -- have gotten worse every five years."

But a look at the county-level data reveals what may be the most important finding: most rural counties are getting less efficient, while most urban counties are getting more efficient.

"In other words, as we are facing a more uncertain future regarding water resources, rural counties are being left behind," Arumugam says.

The researchers found that investment in new water-efficiency technologies, and retrofitting existing water infrastructure, are big reasons for the improvement in urban areas.

"Rural counties appear to lack the resources, the political will, or both, to keep pace," Arumugam says.

Another important finding is that technologies and strategies focused on efficiency -- as opposed to large-scale projects, such as building new reservoirs -- have been extremely successful. These efforts have allowed urban areas to avoid sharp increases in water use, even as their populations have grown significantly.

"There may be a role for huge infrastructure projects at some point, but these findings underscore the value of focusing on efficiency measures -- and the need to pursue those measures in rural counties," Arumugam says.

Story Source: North Carolina State University. "Water efficiency in rural areas is getting worse, even as it improves in urban centers." ScienceDaily. ScienceDaily, 18 May 2017. http://www.sciencedaily.com/releases/2017/05/170518140246.htm

Tuesday, April 25, 2017

Wax Worm Caterpillar Will Eat Plastic Shopping Bags: New Solution to Plastic Waste?

Date: April 24, 2017
Source: Cell Press
Summary: Generally speaking, plastic is incredibly resistant to breaking down. That's certainly true of the trillion polyethylene plastic bags that people use each and every year. But researchers may be on track to find a solution to plastic waste. The key is a caterpillar commonly known as a wax worm.


This image shows a wax worm chewing a hole through plastic. Polyethylene debris can be seen attached to the caterpillar.
Credit: Federica Bertocchini, Paolo Bombelli, and Chris Howe


Generally speaking, plastic is incredibly resistant to breaking down. That's certainly true of the trillion polyethylene plastic bags that people use each and every year. But researchers reporting in Current Biology on April 24 may be on track to find a solution to plastic waste. The key is a caterpillar commonly known as a wax worm.

"We have found that the larva of a common insect, Galleria mellonella, is able to biodegrade one of the toughest, most resilient, and most used plastics: polyethylene," says Federica Bertocchini of the Institute of Biomedicine and Biotechnology of Cantabria in Spain. A previous study (doi: 10.1021/es504038a) has shown that Plodia interpunctella wax worms, the larvae of dian mealmoths, can also digest plastic.

Bertocchini and her colleagues made the discovery quite by accident, after noticing that plastic bags containing wax worms quickly became riddled with holes. Further study showed that the worms can do damage to a plastic bag in less than an hour.

After 12 hours, all that munching of plastic leads to an obvious reduction in plastic mass. The researchers showed that the wax worms were not only ingesting the plastic, they were also chemically transforming the polyethylene into ethylene glycol. This is suspected to be the case in Plodia interpunctella as well.

Although wax worms wouldn't normally eat plastic, the researchers suspect that their ability is a byproduct of their natural habits. Wax moths lay their eggs inside beehives. The worms hatch and grow on beeswax, which is composed of a highly diverse mixture of lipid compounds. The researchers say the molecular details of wax biodegradation require further investigation, but it's likely that digesting beeswax and polyethylene involves breaking down similar types of chemical bonds.

"Wax is a polymer, a sort of 'natural plastic,' and has a chemical structure not dissimilar to polyethylene," Bertocchini says.

As the molecular details of the process become known, the researchers say it could be used to devise a biotechnological solution to managing polyethylene waste. They'll continue to explore the process in search of such a strategy.

"We are planning to implement this finding into a viable way to get rid of plastic waste, working towards a solution to save our oceans, rivers, and all the environment from the unavoidable consequences of plastic accumulation," Bertocchini says. "However," she adds, "we should not feel justified to dump polyethylene deliberately in our environment just because we now know how to bio-degrade it."

Journal Reference:
Bombelli et al. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 2017 DOI: 10.1016/j.cub.2017.02.060

Story Source:
Cell Press. "Wax worm caterpillar will eat plastic shopping bags: New solution to plastic waste?." ScienceDaily. ScienceDaily, 24 April 2017. www.sciencedaily.com/releases/2017/04/170424141338.htm.

Monday, April 3, 2017

Chance Find Has Big Implications for Water Treatment's Costs And Carbon Footprint

Date: March 24, 2017
Source: Engineering and Physical Sciences Research Council
Summary: A type of bacteria accidentally discovered during research could fundamentally reshape efforts to cut the huge amount of electricity consumed during wastewater clean-up. The discovery has upended a century of conventional thinking. The microorganisms -- 'comammox' (complete ammonia oxidizing) bacteria -- can completely turn ammonia into nitrates.

A type of bacteria accidentally discovered during research supported by the Engineering and Physical Sciences Research Council (EPSRC) could fundamentally re-shape efforts to cut the huge amount of electricity consumed during wastewater clean-up.

The discovery has upended a century of conventional thinking. The microorganisms -'comammox' (complete ammonia oxidising) bacteria -- can completely turn ammonia into nitrates. Traditionally, this vital step in removing nitrogen from wastewater has involved using two different microorganisms in a two-step approach: ammonia is oxidised into nitrites that are then oxidised into nitrates, which are turned into nitrogen gas and flared off harmlessly.

The outcome could be a big rethink regarding the energy-saving innovations developed over the last two to three decades in the field of nitrogen removal. Wastewater treatment is a huge consumer of electricity, accounting for 2-3 per cent of all power usage in western countries, and no less than 30 per cent of its energy bill results from the need to remove nitrogen. Most of the sector's efforts to reduce its energy use have focused on the two-microorganism approach.

The discovery was made by scientists working on the EPSRC-funded Healthy Drinking Water project, which is being led by the University of Glasgow and is due to publish its core findings later this year.

Dr Ameet Pinto has led the team, which has worked in collaboration with the University of Michigan in the US. He says: "This discovery took us completely by surprise. It's a superb example of how EPSRC support provides a secure platform for a can-do environment enabling researchers to achieve important spin-off breakthroughs in addition to the primary goals of their research."

Comammox was found in a drinking water system in the US. Other research groups have also detected it in wastewater treatment plants, in groundwater and even in aquaculture systems.

Dr Pinto says: "The discovery of a single microorganism capable of full nitrification will have a significant impact on our understanding of the nitrogen cycle and on efforts to manage nitrogen pollution. The potential is there for the wastewater treatment sector to exploit this breakthrough, which other teams in Europe have made in parallel with us.

"That would be an important step towards informing the development of robust approaches in terms of cutting costs and reducing carbon emissions associated with generating the huge amounts of electricity that the sector uses. It's a great story to highlight on World Water Day."

Story Source: Engineering and Physical Sciences Research Council. "Chance find has big implications for water treatment's costs and carbon footprint." ScienceDaily. ScienceDaily, 24 March 2017. www.sciencedaily.com/releases/2017/03/170324104906.htm

Thursday, February 16, 2017

Eco-Friendly Concrete Created

Date: February 13, 2017
Source: Rutgers University
Summary: In the future, wide-ranging composite materials are expected to be stronger, lighter, cheaper and greener for our planet, thanks to a new invention. Nine years ago, an American researcher invented an energy-efficient technology that harnesses largely low-temperature, water-based reactions.

In the future, wide-ranging composite materials are expected to be stronger, lighter, cheaper and greener for our planet, thanks to an invention by Rutgers' Richard E. Riman.

Nine years ago, Riman, a distinguished professor in the Department of Materials Science and Engineering in the School of Engineering, invented an energy-efficient technology that harnesses largely low-temperature, water-based reactions. As a result, he and his team can make things in water that previously were made at temperatures well above those required to thermally decompose plastics.

So far, the revolutionary technology has been used to make more than 30 different materials, including concrete that stores carbon dioxide, the prime greenhouse gas linked to climate change. Other materials include multiple families of composites that incorporate a wide range of metals, polymers and ceramics whose behavior can be processed to resemble wood, bone, seashells and even steel.

A promising option is creating materials for lightweight automobiles, said Riman, who holds dozens of patents and was recently named a fellow of the National Academy of Inventors. The materials could be used for engine, interior and exterior applications. Other materials could perform advanced electronic, optical and magnetic functions that replace mechanical ones.

"Ultimately, what we'd like to be able to do is create a 'Materials Valley' here, where this technology can start one company after another, small, medium and large businesses," Riman said. "It's a foundational or platform technology for solidifying materials that contain ceramics, among other things. They can be pure ceramics, ceramics and metals, ceramics and polymers -- a really wide range of composites."

Riman, who has taught for 30 years in the Department of Materials Science and Engineering, focuses on making ceramic materials under sustainable conditions. That means low energy with a low carbon dioxide footprint.

His patented technology creates bonds between materials at low temperatures. It's called reactive hydrothermal liquid-phase densification (rHLPD), also known as low-temperature solidification. And it's been used to make a wide range of ceramic composite materials at Rutgers, according to an article published last summer in the Journal of the American Ceramic Society.

"Typically, we don't go any higher than 240 degrees centigrade (464 degrees Fahrenheit) to make the composite materials," Riman said. "A lot of these processes are done even at room temperature."

Riman, who earned a bachelor's degree in ceramic engineering at Rutgers and a doctorate in materials science and engineering at the Massachusetts Institute of Technology, invented the technology after studying how engineers densified Alaskan fields of snow and ice to create airplane landing strips.

"I looked at how shellfish make ceramics at low-temperature, like carbonate crystals, and then looked at what people can do with water to make landing strips in Alaska and I said we should be able to do this with ceramics, but use a low-temperature chemical process that involves water," he said.

Riman came up with the idea decades ago but didn't launch the technology until climate change became a bigger issue. "When it became important to investors to see green technology developed to address carbon emissions in the world, I decided it was time to take this technology commercial," he said.

So he founded Solidia Technologies Inc. in Piscataway, New Jersey, in 2008. It's a startup company marketing improved, eco-friendly cement and concrete for construction and infrastructure. Concrete is a $1 trillion market, Riman noted.

"The first thing we did was show that we could make a material that costs the same as conventional Portland cement," he said. "We developed processing technology that allows you to drop the technology right into the conventional world of concrete and cement without having to make major capital expenditures typically encountered when a technology is disruptive to the marketplace. We plan to do the same thing in the advanced materials business."

Solidia Concrete products have superior strength and durability. They, combined with Solidia Cement, can reduce the carbon footprint of cement and concrete by up to 70 percent and can save as much as 528.3 billion gallons a year, according to Solidia Technologies.

The company's concrete-based products include roofing tiles, cinder blocks and hollow core building slabs. The company approaches concrete product manufacturers to see if they're interested in licensing its products.

"When you can develop technologies that are safe and easy to use, it's a game changer -- and that's just one of the many areas that we're interested in pursuing," Riman said.

His second investor-funded start-up company is RRTC Inc., which is developing advanced composite materials for myriad uses. They include electronic, optical, magnetic, biomedical, biotechnology, pharmaceutical, agricultural, electrochemical, energy storage, energy generation, aerospace, automotive, body and vehicle armor, textile, and abrasive and cutting applications.

Story Source: Rutgers University. "Eco-friendly concrete created." ScienceDaily. ScienceDaily, 13 February 2017.

Original written by Todd B. Bates.

Journal Reference:

Cekdar Vakifahmetoglu, Jean Francois Anger, Vahit Atakan, Sean Quinn, Surojit Gupta, Qinghua Li, Ling Tang, Richard E. Riman. Reactive Hydrothermal Liquid-Phase Densification (rHLPD) of Ceramics - A Study of the BaTiO3[TiO2] Composite System. Journal of the American Ceramic Society, 2016; 99 (12): 3893 DOI: 10.1111/jace.14468

Friday, January 27, 2017

Researchers Discover Greenhouse Bypass for Nitrogen

Finding May Offer Farmers a Way to Reduce Harmful Emissions from Fertilized Soil

Date: January 18, 2017
Source: Virginia Institute of Marine Science
Summary: Production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2, an international team of researchers has discovered.


Associate professor BK Song of the Virginia Institute of Marine Science collects water samples for analysis of nitrogen and microbes.
Credit: © D. Malmquist/VIMS.

Those concerned with water quality are familiar with nitrogen as a major pollutant whose excess runoff into coastal waters can lead to algal blooms and low-oxygen dead zones. Perhaps less familiar is the significant role that a form of nitrogen gas plays in greenhouse warming and the destruction of Earth's ozone layer.

Now, an international group of scientists including Dr. B.K. Song of William & Mary's Virginia Institute of Marine Science have discovered that production of this potent greenhouse gas -- known as N2O or nitrous oxide -- can be bypassed as complex nitrogen compounds in soil, water, and fertilizers break down into the unreactive nitrogen gas (N2) that makes up most of our atmosphere.

Their discovery, published in a recent edition of Scientific Reports, reveals an entirely new pathway in the global nitrogen cycle and could lead to new ways for farmers and others to reduce their emissions of harmful gases. The study's lead author is Rebecca Phillips of New Zealand's Landcare Research Institute, along with Landcare colleagues Andrew McMillan, Gwen Grelet, Bevan Weir, and Palmada Thilak; as well as Craig Tobias of the University of Connecticut.

Agriculture contributes more nitrous oxide to the atmosphere than any other human activity -- primarily through nitrogen fertilization. This greenhouse gas is 300 times more effective at trapping heat than carbon dioxide and 10 times more effective than methane. Nitrous oxide also moves into the stratosphere and destroys ozone.

Current wisdom holds that nitrous oxide is inevitably produced when soil nitrogen -- including fertilizer components such as ammonia, ammonium, and urea -- breaks down. It's also thought this breakdown process requires the action of microbes, and can only occur in the absence of oxygen.

The current research contradicts each of these long-held ideas.

"Our findings question the assumption that nitrous oxide is an intermediate required for formation of nitrogen gas [N2]," says Phillips. "They also throw doubt on whether microbial production of nitrous oxide must take place in the absence of oxygen."

"We now have a pathway that doesn't require microbes," adds Song. "The process of denitrification can happen abiotically, without the need for bacteria or fungi."

The team's discovery could lead to practical applications for decreasing the impacts of excess nitrogen in the environment, a topic they focused on while presenting their findings during a recent meeting in Washington D.C. sponsored by the U.S. Department of Agriculture and the National Integrated Water Quality Program.

"It might give us a way to engineer the system to reduce levels of fixed nitrogen," says Song. "By changing the types and ratios of nitrogen compounds in fertilizer, you might have a better way to reduce excess nitrogen, and to mitigate eutrophication or nutrient enrichment in nearby waters."

Phillips adds, "Further research could inform farmers of how to cultivate soil organic matter useful for nitrogen management. Organic forms of soil nitrogen, such as waste products from plants and fungi, could help convert excess inorganic nitrogen -- which would otherwise be leached into water or emitted as nitrous oxide -- into a form that isn't harmful to the environment."

However, the scientists say more research is needed to test exactly which forms of organic nitrogen are most effective. The team is now developing proposals for further funding that will allow them to investigate on-farm applications for transforming excess nitrogen from soil and water into unreactive atmospheric N2 gas without producing N2O. This may allow scientists to develop options to manage the fate of agricultural nitrogen while avoiding greenhouse-gas emissions.

Story Source:

Virginia Institute of Marine Science. "Researchers discover greenhouse bypass for nitrogen: Finding may offer farmers a way to reduce harmful emissions from fertilized soil." ScienceDaily. ScienceDaily, 18 January 2017. www.sciencedaily.com/releases/2017/01/170118163725.htm

Materials provided by Virginia Institute of Marine Science. Original written by David Malmquist.

Thursday, January 19, 2017

Wastewater Treatment Upgrades Result in Major Reduction of Intersex Fish

Date: January 10, 2017
Source: University of Waterloo
Summary: Upgrades to a wastewater treatment plant along Ontario's Grand River, led to a 70 per cent drop of fish that have both male and female characteristics within one year and a full recovery of the fish population within three years, according to researchers.


PhD candidate Patricija Marjan and Professor Mark Servos collect rainbow darter fish on the Grand River in Ontario.
Credit: University of Waterloo


Upgrades to a wastewater treatment plant along Ontario's Grand River led to a 70 per cent drop in fish that have both male and female characteristics within one year and a full recovery of the fish population within three years, according to researchers at the University of Waterloo.

The 10-year study, published in Environmental Science and Technology found that the microorganisms used to remove ammonia in the wastewater treatment process also reduced the levels of endocrine disrupters in the water, which caused the intersex occurrences in fish to dramatically decline.

"Having long-term data of the fish population, before and after the wastewater treatment upgrades makes this a truly unique study," said Mark Servos, Canada Research Chair in Water Quality Protection in Waterloo's Department of Biology. "The changes to Kitchener's wastewater treatment system have had a much larger positive impact then we had anticipated."

In 2007, Servos started tracking the number of intersex male rainbow darter fish in the Grand River. Intersex fish are a result of exposure to natural and synthetic hormones in the water, which cause male fish to grow eggs in their testes. At one point Servos noted the rate of intersex changes in the Grand River was one of the highest in the world.

In 2012, the Region of Waterloo upgraded the Kitchener Wastewater Treatment Plant and changed the aeration tank to reduce toxic ammonia. Within one year the proportion of intersex males dropped from 100 per cent in some areas to 29 per cent. By the end of three years, the numbers dropped below the upstream levels of less than 10 per cent.

"Rainbow darters are the Grand River's canary in the coal mine," said Servos, also a member of the Water Institute at Waterloo. "They're extremely sensitive to the concentration of estrogens and other hormone disrupters in the water. Still, we didn't expect them to recover so quickly."

Endocrine disruption in water systems is a worldwide phenomenon. Estrogen in birth control pills and other chemicals that mimic natural hormones are known to impact fish health in trace amounts as low as one part per trillion, far below what conventional wastewater treatment can typically remove.

"In Europe, water treatment engineers have been turning to extremely expensive tertiary treatments to meet regulatory standards," said Servos. "Kitchener's example shows what can be done with currently available technology."

The Grand River watershed in southern Ontario, is the largest watershed that drains into Lake Erie. The area has a growing population of nearly one million people.

Story Source:
University of Waterloo. "Wastewater treatment upgrades result in major reduction of intersex fish." ScienceDaily. ScienceDaily, 10 January 2017. http://www.sciencedaily.com/releases/2017/01/170110151418.htm.

Journal Reference:
Keegan A Hicks, Meghan LM Fuzzen, Emily K. McCann, Maricor J Arlos, Leslie M. Bragg, Sonya Kleywegt, Gerald R Tetreault, Mark E McMaster, Mark R. Servos. Reduction of intersex in a wild fish population in response to major municipal wastewater treatment plant upgrades. Environmental Science & Technology, 2016; DOI: 10.1021/acs.est.6b05370